
Common C Pitfalls
    We often encounter programmers who are new to C and call us with C-related 
programming problems.    Here are a few of the many things to watch out for when 
programming with C.

• Code written in C can be simultaneously very powerful and very obscure.    We have tried 
to write the C example programs in such a way that they maintain a line-by-line 
correspondence to the Fortran and Pascal example programs.    If you don't understand what 
we are doing in C, try looking at the corresponding Fortran or Pascal source code.

• A missing ";" at the end of a line, or the use of "=" instead of "==" in a logical expression 
are common mistakes.

• C always uses 0-based array indexing, although array declarations are 1-based.    For 
example, an array "X" of 10 integers would be dimensioned as "X[10]" but the 10 elements 
would be indexed from 0 to 9.    Many C programmers find this counter-intuitive and add an 
extra element to each array so that they can use 1-based indexing!

• If a "case" in a "switch" block does not end in "break", then the following case is also 
executed.    Most programmers find this to be counter-intuitive (the point of a case block is 
almost always to execute one case or another).

• The following expressions are equivalent, and both forms are used by C programmers:    
"(*gWindptr[0]).txFont"    and    "gWindptr[0]->txFont".    Note, in particular, the need in this 
case to use parentheses with "*", since "." takes precedence over "*".

• Although the address of an array obtained with the "&" operator and the array name can 
be used interchangeably in C, we have, for consistency across compilers, avoided use of the 
"&" operator before array names.    Note, however, that this equivalence of an array's 
address and the array name does not extend to "struct"s.    For example, the toolbox type 
"Rect" is a struct, not an array, so a variable of this type should always be preceeded by "&" 
when passed as an argument in a toolbox call.    Finally, if referencing the address of a 
nonarray element within an array, then the "&" operator must be used.    For example, the 
toolbox call BlockMove expects a source address, destination address, and a number of 
bytes to move.    If "a" and "b" are one-dimensional integer arrays, then writing
    BlockMove(&a[i], &b[j], 4L);
would move 4 bytes from the "a" array at element "i" to the "b" array at element "j".    
Without the "&" operator,
    BlockMove(a[i], b[j], 4L);
would move 4 bytes from the address given by "a[i]" to the address given by "b[j]" (probably
not what you intended!).    On the other hand, if "a" and "b" were arrays of strings (arrays of 
character arrays), then writing
    BlockMove(&a[i], &b[j], 4L);
would produce the same result as
    BlockMove(a[i], b[j], 4L);
This can be quite confusing.

• When reading and writing integers with "printf" and "scanf" (or related functions), "long" 
(4-byte) integers must be assigned an "l" (lower case L) as the size specification in the 
corresponding conversion specification of the format string.

• If not using prototypes, you must be careful to pass the proper integer type as arguments 
in function calls.    For example, the FaceIt dispatching procedure expects "long" (4-byte) 
arguments, so you should not pass it "short" (2-byte) integers.    Be careful, in particular, 



when passing constants since these default to short integers unless followed by "L":

    FaceIt(0,DoLoop,0,0,0,0);                    /* WRONG!!! */
    FaceIt(0L,DoLoop,0L,0L,0L,0L);          /* RIGHT!!! */


